NEES News

Solar cells improved with nanospheres is subject of ACS journal cover

Solar cells improved with nanospheres is subject of ACS journal cover


The cover of the October 12, 2016 issue of ACS Applied Materials & Interfaces features the work of Prof. Jeremy Munday (ECE, IREAP, NanoCenter) , Prof. Marina Leite (MSE, IREAP, NanoCenter) and IREAP graduate students Dongheon Ha and Chen Gong.  

Abstract: To increase the power conversion efficiency of solar cells, improved antireflection coatings are needed to couple light into the cell with minimal parasitic loss. Here, we present measurements and simulations of an antireflection coating based on silicon dioxide (SiO2) nanospheres that improve solar cell absorption by coupling light from free space into the absorbing layer through excitation of modes within the nanospheres. The deposited monolayer of nanospheres leads to a significant increase in light absorption within an underlying semiconductor on the order of 15–20%. When the periodicity and spacing between the nanospheres are varied, whispering gallery-like modes can be excited and tuned throughout the visible spectrum. The coating was applied to a Si solar cell containing a Si3N4 antireflection layer, and an additional increase in the spectral current density of ∼5% was found. The fabrication process, involving Meyer rod rolling, is scalable and inexpensive and could enable large-scale manufacturability of microresonator-based photovoltaics.

Demonstration of Resonance Coupling in Scalable Dielectric Microresonator Coatings for Photovoltaics

Dongheon Ha, Chen Gong, Marina S. Leite, and Jeremy N. Munday

ACS Appl. Mater. Interfaces, 8 (37), 24536 (2016)

doi:10.1021/acsami.6b05734

October 19, 2016


Prev   Next

Current Headlines

NEES student selected for U.S. DOE Graduate Student Research Award

Liangbing Hu Wins NANOLetters Young Investigator Award

Alexander Pearse wins Dean's Doctoral Research Award

7th Annual Engineering Sustainability Day focuses on Energy Storage

UMERC’s Liangbing Hu pitches transparent wood technology at 2017 ARPA-E Innovation Summit

A nerve modeled on a battery

A peek under a hybrid’s hood reveals wood?

Cheaper, Faster and Longer Lasting: What Magnesium Iodine Chemistry Can Offer

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar